L^p convergence and large deviations for a supercritical multi-type branching process in a random environment

Quansheng Liu

CNRS UMR 6205, Laboratoire Math. Bretagne Atlantique, Univ. Bretagne-Sud 18th International Workshop on Markov Processes and Related Topics BNU and Tianjin Univ., 30 July - 2 August 2023, Tianjin Joint work with Ion Grama, Erwan Pin, and Thi Trang Nguyen

Summary

- Background
- Model
- Objective
- 2

L^p convergence

- Preliminary : Kesten-Stigum type theorem
- L^p-convergence of the normalized population
- Proof; L^p-convergence of the fundamental martingale
- Precise large deviations
 - Bahadur-Rao type theorem
 - Why true
 - Proof : measure change and *L^p* convergence under the changed measure

Background

Summary

Introduction

- Background
- Model
- Objective

2 L^p convergence

- Preliminary : Kesten-Stigum type theorem
- L^p-convergence of the normalized population
- Proof; L^p-convergence of the fundamental martingale

3 Precise large deviations

- Bahadur-Rao type theorem
- Why true
- Proof : measure change and *L^p* convergence under the changed measure

- Smith and Wilkinson (1969) : i.i.d. environment, extinction.
- Athreya and Karlin (1971) : stationary and ergodic environment, fundamental limit theorems.
- Critical and subcritical cases : survival probability and conditional limit theorems (*d* ≥ 1).
- Supercritical case : moderate and large deviations : Single type case (d=1) : Buraczewski & Dyszewski (2020) for LD, Grama, Liu & Miqueu (2017) for MD.
 Multitype case (d > 1) : Grama, Liu & Pin (2020) for MD.

Here we focus on the supercritical case with d > 1, and study precise large deviation and L^{p} convergence

Summary

- Background
- Model
- Objective
- 2 L^p convergence
 - Preliminary : Kesten-Stigum type theorem
 - L^p-convergence of the normalized population
 - Proof; L^p-convergence of the fundamental martingale
- 3 Precise large deviations
 - Bahadur-Rao type theorem
 - Why true
 - Proof : measure change and *L^p* convergence under the changed measure

Precise large deviations

Model

Multi-type branching process

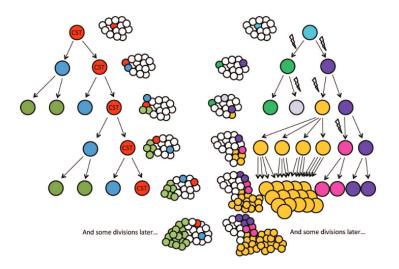


FIGURE – Division of a cancer cell

Precise large deviations

Model

Multi-type Galton-Watson process

A *d*-type branching process $Z_n = (Z_n(1), \dots, Z_n(d))$ starting from $v \in \mathbb{N}^d \setminus \{0\}$ is defined as follows : $Z_0 = v$,

$$Z_{n+1}=\sum_{r=1}^d\sum_{l=1}^{Z_n(r)}N_{l,n}^r\quad n\geq 0.$$

- $Z_n(j)$ = number of particles of type *j* in generation *n*;
- N^r_{l,n}(j) = # children of type j of l-th particle of type r, of gen. n.
- Galton-Watson process : all N^r_{l,n} are independent, and have p.g.f. indep. of n and l : for s = (s₁, · · · , s_d) ∈ [0, 1]^d,

$$f^{r}(s) = \mathbb{E}\left(\prod_{j=1}^{d} s_{j}^{N_{l,n}^{r}(j)}\right) = \sum_{k_{1},\cdots,k_{d}=0}^{\infty} p_{k_{1},\cdots,k_{d}}^{r} s_{1}^{k_{1}}\cdots s_{d}^{k_{d}},$$

.e. $\mathbb{P}(N_{l,n}^{r}=k) = p_{k}^{r}, \quad \forall k = (k_{1},\cdots,k_{d}), n \ge 0, l \ge 1.$

7/36

Multitype branching process in a random environment

The offspring distributions of gen. *n* depend on the random environment ξ_n at time *n*. We suppose that the random environment sequence $\xi = (\xi_0, \xi_1, \cdots)$ is i.i.d. Denote

$$\mathbb{P}_{\xi} = \mathbb{P}(\cdot|\xi) \text{ (quenched law)}, \quad \mathbb{E}_{\xi} = \mathbb{E}[\cdot|\xi]$$

Conditioned on ξ ,

- the r.v.'s $N_{l,n}^r$ are independent for $l \ge 1$, $n \ge 0$, $1 \le r \le d$;
- each $N_{l,n}^r$ has prob. generating function depending on ξ_n :

$$f_{\xi_n}^r(\boldsymbol{s}) = \mathbb{E}_{\xi}\left(\prod_{j=1}^d \boldsymbol{s}_j^{N_{l,n}^r(j)}\right) = \sum_{k_1,\cdots,k_d=0}^\infty p_{k_1,\cdots,k_d}^r(\xi_n) \boldsymbol{s}_1^{k_1}\cdots \boldsymbol{s}_d^{k_d}.$$

i.e. $\mathbb{P}_{\xi}(N_{l,n}^{r} = k) = p_{k}^{r}(\xi_{n}), \forall k = (k_{1}, \dots, k_{d}), n \ge 0, l \ge 1.$ Z_{n} reduces to the Galton-Watson process if $\xi_{n} = c$ (const.) $\forall n$.

Lyapunov exponent for products of mean matrices

For $n, k \ge 0$, consider $M_{k,n} := M_k \cdots M_n$, where M_n is the mean matrix of the offspring distributions at gen. n:

$$M_n(i,j) = \mathbb{E}_{\xi} \left[Z_{n+1}(j) \middle| Z_n = \boldsymbol{e}_i \right] = \frac{\partial f_{\xi_n}^i}{\partial \boldsymbol{s}_j} (1)$$

 $= \mathbb{E}_{\xi} \# \{ \text{children of type } j \text{ of a type } i \text{ particle of gen. } n \}$

Assume $\mathbb{E} \log^+ ||M_0|| < +\infty$. The Lyapunov exponent of (M_n) is defined by

$$\gamma = \lim_{n \to +\infty} \frac{1}{n} \mathbb{E} \log \|M_{0,n-1}\| = \inf_{n \ge 1} \frac{1}{n} \mathbb{E} \log \|M_{0,n-1}\|.$$

$$\gamma = \lim_{n \to +\infty} \frac{1}{n} \mathbb{E} \log \|M_{0,n-1}\| = \inf_{n \ge 1} \frac{1}{n} \mathbb{E} \log \|M_{0,n-1}\|$$

Classification

We say that the multi-type branching process (Z_n) in the random environment ξ is :

- sub-critical if $\gamma < 0$ $(||Z_n|| \xrightarrow[n \to +\infty]{} 0$ \mathbb{P} -a.s.)
- critical if $\gamma = 0$ ($||Z_n|| \xrightarrow[n \to +\infty]{} 0$ P-a.s.)
- supercritical if $\gamma > 0$ $(\mathbb{P}(||Z_n|| \xrightarrow[n \to +\infty]{} +\infty) > 0.)$

Here we only consider the supercritical regime, i.e. $\gamma > 0$.

Objective

Summary

- Background
- Backgroun
- Model
- Objective

2) *L^p* convergence

- Preliminary : Kesten-Stigum type theorem
- L^p-convergence of the normalized population
- Proof; L^p-convergence of the fundamental martingale
- 3 Precise large deviations
 - Bahadur-Rao type theorem
 - Why true
 - Proof : measure change and *L^p* convergence under the changed measure

Introduction	L ^p convergence	Precise large deviations
Objective		
Ohiective		

We write Z_n^i for Z_n when $Z_0 = e_i$, that is, when the process starts with one initial particle of type *i*.

We focus on the supercritical regime ($\gamma > 0$), and search for :

asymptotic properties of

 $Z_n^i(j) = \#$ particles of type j of gen. n, when $Z_0 = e_i$

by studying the L^p convergence of $\frac{Z_n^i(j)}{\mathbb{E}_e Z_n^i(j)} = \frac{Z_n^i(j)}{M_0}$;

asymptotic properties of

 $||Z_n|| = Z_n(1) + \cdots + Z_n(d) =$ population size of gen. n

by establishing a precise large deviation result of type Bahadur-Rao : for $q > \gamma$,

 $\mathbb{P}(\log \|Z_n\| > qn) \sim ?$

Precise large deviations

Preliminary : Kesten-Stigum type theorem

Summary

Introduction

- Background
- Model
- Objective
- 2 L

L^p convergence

• Preliminary : Kesten-Stigum type theorem

- L^p-convergence of the normalized population
- Proof; L^p-convergence of the fundamental martingale
- 3 Precise large deviations
 - Bahadur-Rao type theorem
 - Why true
 - Proof : measure change and *L^p* convergence under the changed measure

Preliminary : Kesten-Stigum type theorem

Furstenberg- Kesten condition, law of large numbers

Condition **FK** (Furstenberg- Kesten)

There exists a constant C > 1 such that

$$1 \leq \frac{\displaystyle\max_{1\leq i,j\leq d}M_0(i,j)}{\displaystyle\min_{1\leq i,j\leq d}M_0(i,j)} \leq C$$
 \mathbb{P} -a.s.

Recall $\gamma = \lim_{n \to +\infty} \frac{1}{n} \mathbb{E} \log \|M_{0,n-1}\|$ (Lyapunov exponent)

LLN for the components $M_{0,n-1}(i,j)$ (Furstenberg-Kesten 1960)

Assume condition **FK** and $\mathbb{E} \log^+ ||M_0|| < +\infty$. Then

$$\forall i, j \lim_{n \to +\infty} \frac{1}{n} \log M_{0,n-1}(i,j) = \gamma \quad \mathbb{P}\text{-a.s.}$$

Preliminary : Kesten-Stigum type theorem

Kesten-Stigum type theorem (Grama-Liu-Pin, AAP 2023)

Assume condition **FK**, $\gamma > 0$, and $\xi = (\xi_n)_{n \ge 0}$ i.i.d. Then there exist random variables $W^i \in [0, \infty)$ such that for all $1 \le j \le d$,

$$rac{Z_n^i(j)}{\mathbb{E}_{\xi}Z_n^i(j)} = rac{Z_n^i(j)}{M_{0,n-1}(i,j)} \stackrel{\mathbb{P}}{\longrightarrow} W^i$$

Moreover, $\max_{1 \le i \le d} \mathbb{P}(W^i = 0) < 1$ (W^i non-degenerate) iff

$$\max_{1 \leq i,j \leq d} \mathbb{E}\Big(\frac{Z_1^i(j)}{M_0(i,j)} \log^+ \frac{Z_1^i(j)}{M_0(i,j)}\Big) < +\infty. \quad (*)$$

When (*) holds, then for all $1 \le i \le d$, a.s. $\mathbb{E}_{\xi} W^i = 1$ and

$$\{W^i=0\}=\{\|Z^i_n\|\underset{n\to+\infty}{\to}0\},\quad \{W^i>0\}=\{\|Z^i_n\|\underset{n\to+\infty}{\to}+\infty\}.$$

A similar version is found for stationary and ergodic environment.

Preliminary : Kesten-Stigum type theorem

Remarks

• (G-W case) When $\xi_0 = \xi_1 = \cdots = c$ (*const.*), it is equivalent to the theorem of Kesten-Stigum (1966), as

 $M^n(i,j) \sim \rho^n u(i) v(j),$

where *M* is the mean matrix with spectral radius $\rho > 1$, *u*, *v* are the right and left eigenvectors ($Mu^T = \rho u^T$, $vM = \rho v$) with u, v > 0, $||u|| = \langle u, v \rangle = 1$ (Perron-Frobenius Th).

- (Single type case) When d = 1, due to Athreya-Karlin (1971, sufficiency) and Tanny (1988, necessity)
- It is a bridge linking MBPRE and products of random matrices.
- It gives the exponential increasing of $Z^{i}(j)$ since it implies

$$\lim_{n \to +\infty} \frac{1}{n} \log Z_n^i(j) = \gamma > 0 \quad \mathbb{P}\text{-a.s.}$$

Precise large deviations

L^p-convergence of the normalized population

Summary

Introduction

- Background
- Model
- Objective
- 2

L^p convergence

• Preliminary : Kesten-Stigum type theorem

• L^p-convergence of the normalized population

• Proof; L^p-convergence of the fundamental martingale

3 Precise large deviations

- Bahadur-Rao type theorem
- Why true
- Proof : measure change and *L^p* convergence under the changed measure

 L^{p} -convergence of the normalized population

L^p-convergence of the normalized population : NSC

$$I := \{ s \in \mathbb{R} : \max_{1 \le i,j \le d} \mathbb{E} M_0(i,j)^s < +\infty \},$$

$$\kappa(s) := \lim_{n \to +\infty} (\mathbb{E} \| M_{0,n-1} \|^s)^{1/n} \text{ exists, is finite for } s \in I.$$

Theorem (Grama-Liu-Pin 2022)

Assume (FK). Let p > 1 be such that $1 - p \in I$. Then

$$ar{Z}_n^i(j) := rac{Z_n^i(j)}{M_{0,n-1}(i,j)} \stackrel{L^p}{ o} W^i \quad ext{ for all } 1 \leq i,j \leq d$$

if and only if

$$\max_{1 \le i,j \le d} \mathbb{E} \left(\frac{Z_1^i(j)}{M_0(i,j)} \right)^p < +\infty \quad \text{and} \quad \kappa(1-p) < 1.$$

/36

 L^{p} -convergence of the normalized population

L^{p} -convergence of $(\overline{Z}_{n}^{i}(j))$: historic notes

- For *d* ≥ 1, Cohn (Ann. Prob. 1989) claimed that if for some constants *c*₁, *C*₁, *C*₂ > 0,
 - $c_1 \leq M_0(i,j) \leq C_1, \quad \mathbb{E}_{\xi}(Z_1^i(j))^2 \leq C_2$
 - and $\mathbb{E}|\log \sum_{i=1}^{d} (1 \mathbb{P}(\|Z_1^i\| = 0))| < \infty$, then

$$\frac{Z_n^i(j)}{\mathbb{E}_{\xi}Z_n^i(j)} \text{ converges in } L^2.$$

By our theorem, the essential quantitative condition $\kappa(-1) < 1$ is missing in his claim.

 For d = 1, Afanasyev (2001) obtained a sufficient condition (which is not necessary); Guivarc'h and Liu (2001) got the NSC : with M_n = mean of the offspring distribution of gen. n,

$$rac{Z_n}{M_{0,n-1}}$$
 conv. in $L^p \Leftrightarrow \mathbb{E}(rac{Z_1}{M_0})^p < +\infty$ and $\mathbb{E}M_0^{1-p} < 1$.

Precise large deviations

L^p-convergence of the normalized population

Exponential L^p-convergence

Theorem (Grama-Liu-Pin 2022)

There exist $\delta \in (0, 1)$ and $C \in (0, \infty)$ such that $\forall n \ge 1$,

$$\mathbb{E} \left| \bar{Z}_n^i(j) - W^i \right|^p \leq C \delta^n$$

- We have an expression of δ, but the optimal value of δ is not known.
- For *d* = 1, Huang and Liu (2014) found the optimal value of δ.

Precise large deviations

Proof; L^p-convergence of the fundamental martingale

Summary

Introduction

- Background
- Model
- Objective
- 2

L^p convergence

- Preliminary : Kesten-Stigum type theorem
- L^p-convergence of the normalized population

• Proof; L^p-convergence of the fundamental martingale

Precise large deviations

- Bahadur-Rao type theorem
- Why true
- Proof : measure change and *L^p* convergence under the changed measure

Proof; L^{p} -convergence of the fundamental martingale

The difficulty for the proof of L^{ρ} convergence of $\overline{Z}_{n}^{i}(j)$

- (\bar{Z}_n^i) is not a martingale.
- To overcome the difficulty, we study the L^p convergence of the fundamental martingale which has similar properties : Assume M₀ > 0 a.s. For 0 ≤ n ≤ k, let

 $\rho_{n,k}$ = spectral radius of $M_{n,k}$, $U_{n,k}$ > 0 and $V_{n,k}$ > 0 be the right and left eigenvectors :

$$\boldsymbol{M}_{n,k} \ \boldsymbol{U}_{n,k}^{\mathsf{T}} = \rho_{n,k} \ \boldsymbol{U}_{n,k}^{\mathsf{T}}, \quad \boldsymbol{V}_{n,k} \boldsymbol{M}_{n,k} = \rho_{n,k} \ \boldsymbol{V}_{n,k},$$

such that $\|U_{n,k}\| = \langle U_{n,k}, V_{n,k} \rangle = 1$. By Hennion (1997),

$$U_{n,\infty} = \lim_{k \to +\infty} U_{n,k} > 0, \quad M_n U_{n+1,\infty}^T = \lambda_n U_{n,\infty}^T$$

where $||U_{n,\infty}|| = 1$, $(U_{n,\infty})$ and (λ_n) are stationary and ergodic. By Grama-Liu-Pin (2023), with $\lambda_{0,n-1} = \pi_{i=0}^{n-1} \lambda_i$,

$$W_n^i = rac{\langle Z_n^i, U_{n,\infty}
angle}{\lambda_{0,n-1} U_{0,\infty}(i)}$$
 is a martingale, $W_n^i \xrightarrow{a.s.} W^i$.

Proof: L^{p} -convergence of the fundamental martingale

Proof of the L^p convergence of W_p^i

1 We start with 1 . We show that

$$\mathbb{E}_{\xi}|\boldsymbol{W}_{n+1}^{i}-\boldsymbol{W}_{n}^{i}|^{p}\leq \boldsymbol{C}\sigma_{n}(\boldsymbol{p})(\lambda_{0,n-1}\boldsymbol{U}_{0,\infty}(\boldsymbol{i}))^{1-p},$$

with C > 0 a constant, $\sigma_n(p) = \max_{1 \le i \le d} \mathbb{E}_{\xi} |W_{n,1}^j - 1|^p$, and

 $(W_{n,k}^{j})_{k>0}$ the martingale associated to a branching process starting with one particle of type *i* in the shifted environment $T^n\xi=(\xi_n,\xi_{n+1},\cdots).$

2 We take the expectation conditioned on $T^n\xi$:

$$\mathbb{E}_{\mathcal{T}^n\xi}|W_{n+1}^i - W_n^i|^{\rho} \leq C\sigma_n(\rho)\mathbb{E}_{\mathcal{T}^n\xi}(\lambda_{0,n-1}U_{0,\infty}(i))^{1-\rho}.$$

3 We show that for all $s \in I$, there is a constant C_s such that

$$\mathbb{E}_{\mathcal{T}^{n}\xi}(\lambda_{0,n-1}U_{0,\infty}(i))^{s} = \mathbb{E}_{\mathcal{T}^{n}\xi}\langle M_{0,n-1}U_{n,\infty}, e_{i}\rangle^{s}$$

$$\leq \sup_{\|x\|=\|y\|=1} \mathbb{E}\langle M_{0,n-1}x, y\rangle^{s}$$

$$\leq C_{s}\kappa(s)^{n}.$$
23/3

Proof; L^p-convergence of the fundamental martingale

Proof of the L^p convergence of W_n^i

We get

$$\mathbb{E}|W_{n+1}^{i}-W_{n}^{i}|^{p} \leq C\mathbb{E}\sigma_{0}(p)\kappa(1-p)^{n}.$$

So For p > 2, we use an argument by induction.

Solution To show that the condition is necessary, consider the transfer operator P_s such that for s ∈ I and all φ ∈ C(S),

$$P_{s}\varphi(x) := \mathbb{E} \big[\|xM_{0}\|^{s} \varphi(x \cdot M_{0}) \big], \quad x \in \mathcal{S},$$

where $x \cdot M_0 = xM_0/||xM_0||$ is the direction of the vector xM_0 . We prove that $\kappa(s)$ is the spectral radius of P_s , and there exists a strictly positive eigenfunction $r_s \in C(S)$:

$$P_s r_s = \kappa(s) r_s.$$

Using the properties of the eigenfunction r_{1-p} and the recursive relation satisfied by W^i (due to the branching property), we obtain $\kappa(1-p) < 1$ (strict inequality).

24/36

Proof; L^p-convergence of the fundamental martingale

Conditions for products of positive random matrices

Denote by $\Gamma_{\mu} = [supp \,\mu]$ the smallest closed semigroup generated by *g* in the support of μ . Usual conditions :

- (A1) Allowability : every $g \in \Gamma_{\mu}$ has the property that every row and every column of g has a strictly positive entry.
- (A2) Positivity : Γ_μ contains at least one strictly positive matrix.
- (A3) Non-arithmeticity : the measure μ is non-arithmetic. The measure μ is said to be *arithmetic*, if $\exists t > 0, \beta \in [0, 2\pi)$ and a real function ϑ defined on $S := \{v \in \mathbb{R}^d_+ : ||v|| = 1\}$ such that for any $g \in \Gamma_\mu$ and any $x \in V(\Gamma_\mu)$,

$$\exp[it \log |gx| - i\beta + i\vartheta(g \cdot x) - i\vartheta(x)] = 1$$

where $V(\Gamma_{\mu}) = \overline{\{v_g \in S : g \in \Gamma_{\mu}, g \text{ is proximal}\}}$. (denote by λ_g the dominant eigenvalue, v_g the associated eigenvector with unit norm). This coincides with the usual arithmetic property when $d = 1 : \log |g_1| \in (\beta + 2\pi\mathbb{Z})/t$ a.s..

Bahadur-Rao type theorem

Summary

Introduction

- Background
- Model
- Objective

2 L^p convergence

- Preliminary : Kesten-Stigum type theorem
- L^p-convergence of the normalized population
- Proof; L^p-convergence of the fundamental martingale

Precise large deviations

- Bahadur-Rao type theorem
- Why true
- Proof : measure change and *L^p* convergence under the changed measure

Bahadur-Rao type theorem

The functions $\kappa(s)$ and Λ^*

Set
$$\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^d_+ : \|\mathbf{v}\| = 1 \},\$$

$$I = \{ \boldsymbol{s} \in \mathbb{R} : \mathbb{E}(\|\boldsymbol{M}_0\|^{\boldsymbol{s}}) < \infty \}$$

For any $s \in I$ the limit

$$\kappa(s) = \lim_{n \to \infty} \left(\mathbb{E} \| M_{0,n-1} \|^s \right)^{\frac{1}{n}} \quad (= \mathbb{E} M_0^s = \mathbb{E} e^{s \log M_0} \text{ when } d = 1)$$

exists and is finite. Introduce the Fenchel-Legendre transform of the convex function $\Lambda(s) = \log \kappa(s), s \in I$ by

$$\Lambda^*(q) = \sup_{s \in I} \{ sq - \Lambda(s) \}, \quad q \in \mathbb{R}.$$

We have $\Lambda^*(q) = sq - \Lambda(s)$ if $q = \Lambda'(s)$ for some $s \in I$.

Bahadur-Rao type theorem

Bahadur-Rao type large deviations

Theorem

Let $0 < s \in I^o$ (interior of I) and $q = \Lambda'(s)$. Assume (A1), (A2), (A3) and that one of the following conditions holds :

(H1)
$$s < 1, \mathbb{E}\left[\mathbb{E}\left[\|Z_1\|^{\frac{s}{s-\delta_s}} \mid \xi\right]^{s-\delta_s}\right] < \infty \text{ for some } \delta_s \in (0, s);$$

(H2)
$$s = 1$$
 and $\mathbb{E}[||Z_1||^{1+\delta_1}] < \infty$ for some $\delta_1 > 0$;

(H3) s > 1 and $\exists \delta_s > 0$ such that $\mathbb{E} [\| Z_1 \|^{s + \delta_s}] < \infty$ and

$$\max_{1\leq i,j\leq d} \mathbb{E}\left(\frac{\|M_0\|^{s+\delta_s}}{M_0(i,j)^{s+\delta_s}}Z_1^i(j)^{s+\delta_s}\right) < \infty.$$

Then there is a constant $C_i(s) \in (0, \infty)$ such that

$$\mathbb{P}\big[\|Z_n^i\| \geq e^{nq}\big] \sim \frac{\mathcal{C}_i(s)}{\sqrt{n}} e^{-n\Lambda^*(q)} \quad \text{as} \ n \to \infty.$$

d = 1: due to Buraczewski-Dyszewski (2020).

28/36

Why true

Summary

Introduction

- Background
- Model
- Objective

2 L^p convergence

- Preliminary : Kesten-Stigum type theorem
- L^p-convergence of the normalized population
- Proof; L^p-convergence of the fundamental martingale

Precise large deviations

Bahadur-Rao type theorem

Why true

• Proof : measure change and *L^p* convergence under the changed measure

Introduction 000000000	L ^p convergence	Precise large deviations
Why true		
Why true?		

- Intuition : if $Z_0 = v$, Z_n behaves like $\mathbb{E}_{\xi} Z_n = v M_{0,n-1}$,
- ² More precisely, there is a bridge between the branching process (Z_n^i) and the products of random matrices $M_{0,n-1}$, due to the Kesten-Stigum type theorem (Grama-Liu-Pin AAP 2023) :

$$\frac{Z_n^i(j)}{E_{\xi}Z_n^i(j)} = \frac{Z_n^i(j)}{M_{0,n-1}(i,j)} \xrightarrow{P} W_i \in (0,\infty) \text{ on } \{|Z_n| \to \infty\}$$

For large deviations and Gaussian approximation on products of random matrices, see Xiao-Grama-Liu (SPA 2020, JEMS 2022, AoP 2023).

Proof : measure change and L^p convergence under the changed measure

Summary

Introduction

- Background
- Model
- Objective
- 2 L^p convergence
 - Preliminary : Kesten-Stigum type theorem
 - L^p-convergence of the normalized population
 - Proof; L^p-convergence of the fundamental martingale

Precise large deviations

- Bahadur-Rao type theorem
- Why true
- Proof : measure change and *L^p* convergence under the changed measure

Precise large deviations

Proof : measure change and L^p convergence under the changed measure

Proof of large deviations

For the proof, we need a measure change argument of Cramer type and a L^p convergence theorem for Z_n under the changed measure.

Proof : measure change and L^{ρ} convergence under the changed measure

The operator P_s , eigenmeasure ν_s & eigenfunction r_s

For any $s \in I$, define the transfer operator P_s : for any bounded measurable function φ on S,

$$\mathsf{P}_{s}\varphi(x) := \mathbb{E}\big[\|x\mathsf{M}_{0}\|^{s}\varphi(x\cdot\mathsf{M}_{0})\big], \quad x \in \mathcal{S}.$$

The operator P_s has a unique probability eigenmeasure ν_s on S and a unique (up to a scaling constant) strictly positive and continuous eigenfunction r_s on S, corresponding to the eigenvalue $\kappa(s)$:

$$P_s r_s = \kappa(s) r_s, \quad P_s \nu_s = \kappa(s) \nu_s.$$

Precise large deviations

Proof : measure change and L^{ρ} convergence under the changed measure

Measure change formula

Set

$$q_n^{s}(v, M_{0,n-1}) = \frac{e^{s \log \|v M_{0,n-1}\|}}{\kappa(s)^n} \frac{r_s(v \cdot M_{0,n-1})}{r_s(v)}.$$

Since $P_s r_s = \kappa(s) r_s$, $\int q_n^s(v, M_{n-1} \dots M_0) d\mathbb{P} = 1$, for any $n \ge 1$. So $q_n^s(v, M_{0,n-1}) d\mathbb{P}$ is a probability measure on

$$\underline{\mathcal{F}}_n = \sigma\{\xi_k, N_{k,j}^r : 1 \le k < n, j \ge 1, 1 \le r \le d\}, \text{ with } \underline{\mathcal{F}}_0 = \{\emptyset, \Omega\}.$$

By the Kolmogorov extension theorem, it can be extended to a probability measure, say \mathbb{Q}_{s}^{ν} , on (Ω, \mathcal{F}) , so that for any bounded \mathcal{F}_{n} -measurable random variable Y, we have

$$\mathbb{E}_{\mathbb{Q}_{s}^{\vee}}(Y) = \mathbb{E}\Big[q_{n}^{s}(v, M_{0,n-1})Y\Big].$$
(1)

34/36

Proof : measure change and L^p convergence under the changed measure

L^p convergence under \mathbb{Q}_s^v

For any $s \in I$, $v \in S$ and $z \in \mathbb{C}$ with $s + \Re z \in I$, let

$$\kappa_{\boldsymbol{s}}(\boldsymbol{z}) := \lim_{n \to \infty} (\mathbb{E}_{\mathbb{Q}_{\boldsymbol{s}}^{\boldsymbol{v}}} \| \boldsymbol{M}_{0,n-1} \|^{\boldsymbol{z}})^{\frac{1}{n}} = \frac{\kappa(\boldsymbol{s} + \boldsymbol{z})}{\kappa(\boldsymbol{s})}.$$

Theorem 2.

Assume condition (FK). Let p > 1 be such that $1 - p \in I$. If

$$\max_{1 \le i,j \le d} \mathbb{E}_{\mathbb{Q}_{s}^{e_{i}}} \left(\frac{Z_{1}^{i}(j)}{M_{0}(i,j)} \right)^{p} < +\infty \quad \text{and} \quad \kappa_{s}(1-p) < 1, \quad (2)$$

then
$$\frac{\mathcal{L}_{n}(j)}{(M_{0}\cdots M_{n-1})(i,j)} \stackrel{n \to +\infty}{\longrightarrow} W_{s}^{i}$$
 in $L^{p}(\mathbb{Q}_{s}^{e_{i}})$.

Proof : measure change and L^{p} convergence under the changed measure

References

- Hui Xiao, Ion Grama, Quansheng Liu : Precise large deviation asymptotics for products of random matrices. Stoch. Proc. Appl. 130 (2020) 5213-5242.
- Hui Xiao, Ion Grama, Quansheng Liu : Berry-Esseen bound and precise moderate deviations for products of random matrices. J. Eup. Math. Soc. 24 (2022), 2691–2750
- Hui Xiao, Ion Grama, Quansheng Liu. Large deviation expansions for the coefficients of random walks on the general linear group. *Ann. Prob.* 51 (2023), no. 4, 1380-1420.
- Ion Grama, Quansheng Liu, Erwan Pin : A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment, *Ann. Appl. Prob.* 33 (2023), no. 2, 1013-1051.
- Ion Grama, Quansheng Liu, Erwan Pin. Convergence in L^p for a supercritical multi-type branching process in a random environment. *Proc. Steklov Inst. Math.* 316 (2022), 1-26.
- Ion Grama, Quansheng Liu Q, Thi Trang Nguyen : Precise large deviation asymptotics for supercritical multi-type branching processes in random environments. Preprint.

Thanks for your attention ! quansheng.liu@univ-ubs.fr